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A coupled computational thermo-mechanical model has been developed to simulate the continuous 
casting of complex shaped sections, such as used for steel beam blanks.  An efficient numerical procedure 
to integrate the constitutive equations at the local level is combined with a global finite-element solution of 
temperature and stress.  It includes realistic constitutive behavior of the liquid/mushy zone, delta-ferrite, 
and austenite phases of the solidifying steel shell using a fixed grid approach.  Heat transfer is computed in 
the shell, the complex-shaped mold, and across the interfacial gap between them, and is fully-coupled with 
the stress model to include the effect of shell shrinkage and gap formation on lowering the heat flux. 
Current work, to incorporate results from turbulent thermal-fluid flow simulations of liquid pool into this 
thermal-stress model, is introduced.  
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1 Introduction 

Many manufacturing and fabrication processes 
such as foundry shape casting, continuous casting and 
welding have common solidification phenomena. One 
of the most important and complex of these is 
continuous casting, which produces 90% of steel today. 
Even though the process is constantly improving, there 
is still a significant need to minimize defects and to 
maximize quality and efficiency. 

The high cost of plant experiments under the harsh 
operating steel plant conditions makes it appropriate to 
develop computational models that can predict 
temperature, deformation, and stress in the solidifying 
steel shell in the mold during continuous casting of 
near-net-shape sections with sufficient accuracy to 
solve practical problems such as the design of mold 
taper, and optimization of fluid flow to avoid cracks.   

Numerical modeling of the thermo-mechanical 
solidification of the shell presents a large number of 
computational difficulties, such as the integration of the 
highly nonlinear visco-plastic constitutive laws, 
treatment of liquid/mushy zone, treatment of superheat 
fluxes coming from turbulent fluid flow in liquid pool, 
treatment of latent heat, accounting for the temperature 
dependence of material properties, contact between the 
solidified shell and mold surfaces, and coupling 
between the heat transfer and stress analysis. 

 
This work uses the method developed by Koric et 

al Ref.[1] who implemented a robust local viscoplastic 

integration schemes from an in-house code CON2D 
Ref.[2] into the commercial finite element package 
Abaqus Ref.[3] via its user defined material subroutine 
UMAT including the special treatment of liquid/mushy 
zone.  

 
2 Governing Equations, Solutions Procedures, 

and Validation of Thermal-Stress Model 

The transient energy equation is given in Eq. (1): 
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along with boundary conditions of prescribed 
temperature, prescribed heat flux, or the following 
practical convection condition: 

( ) g mk T h (T T )− ⋅ = −n∇                               (2)  

where ρ  is density, k is isotropic temperature-
dependent thermal conductivity, H is temperature-
dependent enthalpy including latent heat of 
solidification, hg is an effective heat transfer 
coefficient, Tm is the mold surface temperature, and n is 
the unit vector normal to the boundary. 
Inertial effects are negligible in solidification problems, 
so using the static mechanical equilibrium in Eq. 3 as 
the governing equation is appropriate 

( ) 0x b∇ ⋅ σ + =                                                (3) 

where σ  is the Cauchy stress tensor, and b  is the body 
force density vector.  



The rate representation of total strain in this elastic-
viscoplastic model is given by Eq. (4): 

thieel εεεε ++=                                            (4)  

where el ie th, ,ε ε ε are the elastic, inelastic, and thermal 

strain rate tensors respectively. 
Viscoplastic strain includes both strain-rate 

independent plasticity and time dependant creep. Creep 
is significant at the high temperatures of the 
solidification processes and is indistinguishable from 
plastic strain. Kozlowski at al Ref.[4] proposed a 
unified formulation with the following functional form 
to define inelastic strain. 
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Q is activation constant, and 1 2 3 Cf , f , f , f are empirical 
temperature, and steel-grade-dependant constants. 
Another constitutive law, the modified power-
constitutive model developed by Zhu Ref.[2], is used to 
simulate the delta-ferrite phase, which exhibits 
significantly higher creep rates and lower strength than 
the austenite phase.  

The system of ordinary differential equations 
defined at each material point by the viscoplastic model 
equations is converted into two “integrated” scalar 
equations by the backward-Euler method and then 
solved using a special bounded Newton-Raphson 
method Ref.[1] in user subroutine UMAT.  

Abaqus main code is using the fully implicit 
staggered coupled algorithm for time integration of the 
governing equations Ref. [3].  In each time step the 
thermal field is solved, and then the resulting thermal 
strains are used to solve the mechanical problem. 
Newton-Raphson iteration continues until tolerances 
for both equation systems are satisfied before 
proceeding to the next time step.  

The solidification stress model used in this work 
was validated by comparison with a semi-analytical 
solution of thermal stress in an unconstrained 
solidifying plate Ref.[5]. Fig. 1 shows the stress 
distributions, across the solidifying shell at two 
different times and compares the semi-analytical 
solution with the numerical solutions from both Abaqus 

and CON2D codes. The thermal stress results match 
very well among all three methods. More details about 
this validation can be found in Ref.[1].  
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1 Thermal Stress Numerical Validation 
  

3 Thermo-Mechanical Model of Beam Blank Casting 

The computational model solves the coupled 
temperature, stress and deformation in a beam blank 
caster known for its complex geometry. Fig. 2 shows a 
schematic of a cross section of the beam blank caster 
normal to the casting direction. The mold has cooling 
channels at the outer edge of the mold. The generalized 
plane strain finite element domain is used in this work 
in Lagrangian frame of reference as it moves down the 
cast. It encompasses ¼ of the section with a slice of a 
simplified mold wall (neglecting the internal water 
slots) and the corresponding “stripe” of the strand 
adjacent to the mold wall, which is wide enough to 
allow solidification of expected shell thickens 
everywhere. This avoids expensive computation in the 
large liquid domain and contributes to significant cpu 
time saving and also to the robustness of the model.  

 

Fig. 2 Schematic of a transverse BB cross section  
 

Temperature dependent properties Ref.[1] were 
chosen for 0.071 %C plain carbon steel with 
Tsol=1471.9 C and Tliq=1518.7 C. Those include: 
enthalpy, thermal conductivity, thermal expansion, and 
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elastic modulus. In addition to Kozlowski III model 
from Eq. 6, the delta-phase model is applied in the solid 
whenever the volume fraction of ferrite is more than 
10%. The calculation of the volume fractions of the 
liquid, delta, and austenite phases is an integral part of 
UMAT subroutine.  

The shape of the distorted mold wall is computed 
using 3-D elastic thermal stress analysis of ¼ of the 
entire copper mold plates and steel backing plates and 
water jacket structure. 

Two way thermal-mechanical coupling in needed 
in this model since the stress analysis is dependant on 
temperature distribution through thermal strains, while 
the heat conducted between mold and strand depends 
strongly on distance between separated surfaces and is 
calculated from mechanical solution. The gap heat 
transfer coefficient hg is found according to: 
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where d is the gap size, d0 is the critical gap size (taken 
to be 0.1 mm in this work), kair is the thermal 
conductivity of the gas in the gap, Rc is the contact 
resistance of the interface, hrad is the effective heat 
transfer coefficient due to radiation, and h0 is the gap 
heat transfer coefficient corresponding to a gap of size 
d0.  Values of these terms, which vary with temperature, 
and further details of this gap heat transfer calculation 
are given elsewhere Ref.[2].  

By describing the displacements of the mold 
contact surface with respect to the time bellow 
meniscus the actual mold taper used in the plant to 
compensate for shell shrinkage is modeled.  
 

 
Fig. 3 Beam-Blank Shoulder shell temperature contour 

with gap details  
 

The shoulder region of beam-blank mold in Fig 3. 
has a convex shape which is opposite to the corners. 
Heat extraction in shoulder is therefore retarded, 
yielding a thinner shell with higher temperature. 
Presence of a gap in the middle shoulder indicates a 
bending of the shell caused by pressure exerted by the 

middle area of the flange.  Another small gap is present 
at the end of the shoulder arch, and is mainly generated 
by the mold curvature change.  

The maximum and minimum principal stress 
contours at 457 mm shell breakout distance from plant 
measurement are given in Fig. 4. They reveal expected 
compressive shell behavior at the “cold” surface and 
tensile stress in the hot interior near the solidification 
front, similar to the model validation from Fig 1. 
Maximum stress and strain is found in the shoulder 
area which is not a surprise since the thinner shell in 
this region caused by gap formation leads to stress 
concentration.  Longitudinal cracks and breakouts are 
often found in this same shoulder region, as revealed by 
plant observations. 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Max. and Min. Minimum principal stress 

contour 457 mm below meniscus 
 

Shell thickness at 30% solid from this model is 
compared with the measured shell breakout data in Fig. 
5. A good match is observed everywhere except the 
middle portion of the wide face where the measured 
shell appears to be 5 mm thicker. This is likely caused 
by the uneven superheat distribution due to the flow 
pattern in the liquid pool. Therefore, there is a growing 
need to include the effects of fluid flow into a thermal 
stress analysis. The ongoing multiphysics work to 
model all 3 phenomena (fluid flow, heat transfer, and 
stress) is briefly outlined in the next 2 chapters.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Shell thickness comparisons 457 mm 
below meniscus 

4 Heat and Fluid-Flow Analysis of Liquid Pool 

Fluid flow in the liquid pool controls the 
distribution of superheat to the inside surface of the 
solidifying shell.  The 3-D velocity field is calculated 



by solving the turbulent Navier-Stokes equations with 
the k-ε model in FLUENT.  The domain is the liquid 
pool and is curved according to known shape of the 
solid shell.  It extends to the liquidus surface, which has 
vertical downward velocity fixed at the casting speed.  
This condition is incorporated as mass and momentum 
sinks, in order to use standard wall laws [Ref. 6].   

Fluid enters through a funnel which catches the 
gravity-drivent stream from the tundish bottom.   This 
is represented with a fixed-velocity, K, and ε inlet 
boundary plane.  Typical results in Fig. 6 show that 
with a reasonably tight stream, the jet penetrates deep 
into the liquid pool.  A strong recirculation region 
forms, bringing liquid up the centerline in the mold. 

The heat transport equation is then solved in the 
liquid pool for the accompanying superheat distribution 
and heat flux to the shell boundary, superq′′ .  The typical 
temperature contours in Fig. 6 (right) show that the hot 
jet (red) delivers its maximum heat to the shell where it 
impinges tangentially part way down the mold.  The 
rest of the top surface is relatively cold, including the 
web region where the shell grows thickest. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6 Velocities and streamlines (left) and temperature 

contours (right) in centerplane of liquid pool  
 

5 Incorporating Superheat Effects into Thermo-
Mechanical Model via Enhanced Latent Heat   

Fluid flow causes shell thinning and temperature 
changes which affect the thermal stress behavior.  The 
multiphysics approach of simulating all 3 phenomena 
(fluid flow, heat transfer, and stress) simultaneously is 
very computationally demanding and requires 
oversimplification of the individual phenomena.  A 
more accurate approach is to decouple the fluid flow 
simulation from the thermal stress analysis, if the liquid 
pool shape can be determined a-priori.  In many 
processes that involve a stable interface shape, such as 
cryolite ledge formation, or the continuous casting of 
steel, this is relatively easy to do.  A new method is 
being developed to incorporate the effects of heat 

transfer in the liquid pool into simulations of 
solidification in the mushy and solid regions. 

Computational results of fluid flow and heat 
transfer in a liquid domain can be characterized by the 
heat flux crossing the boundary representing the 
solidification front, or liquidus temperature.  This 
“superheat flux” can be incorporated into a simulation 
of heat transfer phenomena in the mushy and solid 
regions, by enhancing the latent heat. Starting with the 
Stefan interface condition, the additional latent heat to 
account for superheat flux delivered from liquid pool 
can be calculated from Eq. (7).  
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where v  is the instantaneous interface velocity which 
can be estimated from analytical or numerical 
solutions. 

A user subroutine UMATHT Ref.[3] was created 
to implement the enhanced latent heat method into 
Abaqus. The focus of current work is to include 
superheat results from fluid flow analysis from section 
4 into the coupled thermo-mechanical model of beam 
blank by linking both mechanical (UMAT) and thermal 
(UMATHT) user subroutines with Abaqus. This is an 
efficient and accurate way to achieve multiphysics 
simulations of metal solidification on continuum level.  
 

Acknowledgment 
 

The authors would like to thank the Steel 
Dynamics Structural and Rail Mill, Continuous Casting 
Consortium at the University of Illinois, the National 
Science Foundation Grant # DMI 05-28668, and NCSA 
for computational and software resources.  
 

References 
 

(1) S. Koric and B.G. Thomas, Efficient Thermo-
Mechanical Model for Solidification Processes, 
International Journal for Num. Methods in Eng. 
Vol. 66 1955-1989, 2006 

(2) Zhu H., Coupled thermal-mechanical FE model 
with application to initial solidification, Ph.D. 
Thesis, University of Illinois  1993 

(3) Abaqus User’s Manual 6.8, Dassault Sys., 2008  

(4) P.F. Kozlowski, B.G. Thomas, J.A. Azzi, and H. 
Wang, Simple constitutive equations for steel at 
high temperature, Met. Mat. Tran. A, Vol. 23, 903-
918, 1992  

(5) J.H. Weiner and B.A. Boley, Elastic-plastic 
thermal stresses in a solidifying body, J. Mech. 
Phys. Solids, Vol. 11 145-154, 1963 

(6) B. Rietow, MS Thesis, U. Illinois, 2007. 

 

0 0.1 0.2 0

D
is

ta
nc

e
fro

m
M

en
is

cu
s

(m
)

0 0.1 0.2 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65


